Part Number Hot Search : 
SGRF303 AY0438IS SD840 C1024 2SC13 LA6358 10350 BFR30
Product Description
Full Text Search
 

To Download IRFR7446TRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature hexfet   power mosfet benefits improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free gds gate drain source applications  brushed motor drive applications  bldc motor drive applications  pwm inverterized topologies  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters d-pak IRFR7446TRPBF    25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) limited by package 4 8 12 16 20 v gs , gate-to-source voltage (v) 2 4 6 8 10 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) t j = 25c t j = 125c i d = 56a ordering information form quantity irfr7446pbf d-pak tube/bulk 75 irfr7446pbf IRFR7446TRPBF d-pak tape and reel 2000 IRFR7446TRPBF orderable part number package type standard pack complete part number d s g v dss 40v r ds(on) typ. 3.0m max. 3.9m i d (silicon limited) 120a i d (package limited) 56a   
      
  
           
  downloaded from: http:///
      
  
            
    calculated continuous current based on maximum allowable junctiontemperature. bond wire current limit is 56a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (refer to an-1140)  repetitive rating; pulse width limited by max. junctiontemperature.  limited by t jmax , starting t j = 25c, l = 0.08mh r g = 50 , i as = 56a, v gs =10v.  i sd 100a, di/dt 1306a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.
r  is measured at t j approximately 90c. limited by t jmax starting t j = 25c, l= 1mh, r g = 50 , i as = 22a, v gs =10v.  l d and l s are internal drain inductance and internal source inductance static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 26 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 3.0 3.9 m 4.4 CCC m v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 1.5 CCC v gs = 20v v gs = -20v v gs = 6.0v, i d = 28a v ds = v gs , i d = 100 a conditions v gs = 0v, i d = 250 a  reference to 25c, i d = 1ma v gs = 10v, i d = 56a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t st g storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  e as (thermally limited) single pulse avalanche energy  i ar avalanche current a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 1.52 r ja CCC 50 r ja junction-to-ambient  CCC 110 251 20 0.66 max. 120  84  520 56 mj -55 to + 175 see fig 15,16, 23a, 23b junction-to-ambient (pcb mount)  a c 300 98 125 c/w downloaded from: http:///
      
  
           
  s d g dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 170 CCC CCC s q g total gate charge CCC 65 130 nc q gs gate-to-source charge CCC 18 CCC q gd gate-to-drain ("miller") charge CCC 22 CCC q sync total gate charge sync. (q g - q gd ) CCC 43 CCC t d(on) turn-on delay time CCC 9.8 CCC ns t r rise time CCC 13 CCC t d(off) turn-off delay time CCC 32 CCC t f fall time CCC 20 CCC c iss input capacitance CCC 3150 CCC pf c oss output capacitance CCC 480 CCC c rss reverse transfer capacitance CCC 330 CCC c oss eff. (er) effective output capacitance (energy related) CCC 570 CCC c oss eff. (tr) effective output capacitance (time related) CCC 680 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current CCC CCC 120 a (body diode) i sm pulsed source current CCC CCC 480 a (body diode)  v sd diode forward voltage CCC 0.9 1.3 v dv/dt peak diode recovery  CCC 4.8 CCC v/ns t rr reverse recovery time CCC 20 CCC ns t j = 25c v r = 34v, CCC 21 CCC t j = 125c i f = 56a q rr reverse recovery charge CCC 13 CCC nc t j = 25c di/dt = 100a/ s  CCC 13 CCC t j = 125c i rrm reverse recovery current CCC 1.8 CCC a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) * t j = 25c, i s = 56a, v gs = 0v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 32v  see fig. 12 v gs = 0v, v ds = 0v to 32v  v gs = 10v  v dd = 20v i d = 56a, v ds =0v, v gs = 10v t j = 175c, i s = 56a, v ds = 40v  integral reverse p-n junction diode. mosfet symbol showing the i d = 30a r g = 2.7 conditions v ds = 10v, i d = 56a i d =56a v ds =20v downloaded from: http:///
      
  
            
  fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 4.3v vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.3v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.3v vgs top 15v 10v 7.0v 6.0v 5.5v 5.0v 4.5v bottom 4.3v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) v ds = 10v 60 s pulse width t j = 25c t j = 175c 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20 40 60 80 100 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 56a -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 56a v gs = 10v downloaded from: http:///
      
  
           
  fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 10 20 30 40 v ds, drain-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 e n e r g y ( j ) 0 20 40 60 80 100 120 140 160 180 200 i d , drain current (a) 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 5.5v v gs = 6.0v v gs = 7.0v vgs = 8.0v v gs =10v 0.1 1 10 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec 100 sec dc l imited by package operation in this area limited by r ds (on) downloaded from: http:///
   !   
  
            
  fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 23a, 23b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 14) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 56a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) downloaded from: http:///
   "   
  
           
   #$%& 
'%('  ) fig 17. threshold voltage vs. temperature 
#$%& 
(*'  )  #$%& 
'%('  ) 
 #$%& 
(*'  ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d =50 a i d = 250 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 i r r m ( a ) i f = 34a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 i r r m ( a ) i f = 56a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 q r r ( n c ) i f = 34a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 q r r ( n c ) i f = 56a v r = 34v t j = 25c t j = 125c downloaded from: http:///
   +   
  
            
  fig 24a. switching time test circuit fig 24b. switching time waveforms fig 23b. unclamped inductive waveforms fig 23a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 25a. gate charge test circuit fig 25b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. ,

'%')$(  for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period -   

  - + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&# 

     d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %         + -     downloaded from: http:///
   .   
  
           
  
  
 
  international as s emb led on ww 16, 2001 in the assembly line "a" or note: "p" in assembly line position example: lot code 1234 this is an irfr120 wi t h as s e mb l y i ndi cates "l ead- f r ee" product (opt ional) p = de s i gnat e s l e ad- f r e e a = assembly site code part number week 16 dat e code year 1 = 2001 rectifier international logo lot code assembly 34 12 irfr120 116a line a 34 rectifier logo irf r120 12 assembly lot code year 1 = 2001 dat e code part number we e k 16 "p" in assembly line position indicates "l ead- f r ee" qual i fi cati on to the cons umer - l evel p = de s i gnat e s l e ad- f r e e product qualified to the consumer level (optional)  
          
     downloaded from: http:///
      
  
            
  
     tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch  
          
     downloaded from: http:///
      
  
           
  / 0 
 

 12 &2))
)&
 #
)%) //3*4 
* %'
' 4 ,
 %
  
 &'
 
 
2 &2
)

# )&) ///5&& '

677( 
&
  ms l 1 (per je de c j-s t d-020d ??? ) rohs compliant (per jedec jesd47f ??? guidelines) yes qualification information ? industrial ?? qualification level d-pak ? 
 
 
   
     ! !"!! # ! $ $! %!! &''((( )'(%!*  ' revision history date comment ? updated e as (l =1mh) = 251mj on page 2 ? updated note 10 limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 , i as = 22a, v gs =10v. on page 2 ? updated package outline on page 9. 1/6/2015 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFR7446TRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X